Перевод: с английского на все языки

со всех языков на английский

electric telegraph

  • 1 electric telegraph

    Универсальный англо-русский словарь > electric telegraph

  • 2 electric telegraph

    English-Russian dictionary of telecommunications and their abbreviations > electric telegraph

  • 3 electric telegraph

    English-Russian marine dictionary > electric telegraph

  • 4 ship electric telegraph

    Телекоммуникации: электрический судовой ТГА

    Универсальный англо-русский словарь > ship electric telegraph

  • 5 ship electric telegraph

    English-Russian dictionary of telecommunications and their abbreviations > ship electric telegraph

  • 6 telegraph

    English-Russian dictionary of telecommunications and their abbreviations > telegraph

  • 7 telegraph

    English-Russian big polytechnic dictionary > telegraph

  • 8 American Telephone and Telegraph

    • American Telephone and Telegraph (A.T.T.) «Американ телефон энд телеграф», корпорация, развившаяся из телефонной компании, основанной в 1877 изобретателем Беллом [Bell System]. Крупнейшая в США и во всём мире монополия в области телефонной связи. Производственная база «А.Т.Т.» — фирма «Уэстерн электрик» [Western Electric]. Контролируется Морганами и Рокфеллерами

    США. Лингвострановедческий англо-русский словарь > American Telephone and Telegraph

  • 9 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 10 Cooke, William Fothergill

    SUBJECT AREA: Telecommunications
    [br]
    b. 1806 Baling, London, England
    d. 25 June 1879 Farnham, Surrey, England
    [br]
    English physicist, pioneer of electric telegraphy.
    [br]
    The son of a surgeon who became Professor of Anatomy at Durham University, Cooke received a conventional classical education, with no science, in Durham and at Edinburgh University. He joined the East India Company's aimy in Madras, but resigned because of ill health in 1833. While convalescent, Cooke travelled in Europe and began making wax models of anatomical sections, possibly as teaching aids for his father. In Germany he saw an experimental electric-telegraph demonstration, and was so impressed with the idea of instantaneous long-distance communication that he dropped the modelling and decided to devote all his energies to developing a practical electric telegraph. His own instruments were not successful: they worked across a room, but not over a mile of wire. His search for scientific advice led him to Charles Wheatstone, who was working on a similar project, and together they obtained a patent for the first practical electric telegraph. Cooke's business drive and Wheatstone's scientific abilities should have made a perfect partnership, but the two men quarrelled and separated. Cooke's energy and enthusiasm got the telegraph established, first on the newly developing railways, then independently. Sadly, the fortune he made from the telegraph was lost in other ventures, and he died a poor man.
    [br]
    Further Reading
    G.Hubbard, 1965, Cooke and Wheatstone and the Invention of the Electric Telegraph, London, Routledge \& Kegan Paul (provides a short account of Cooke's life; there is no full biography).
    BB

    Biographical history of technology > Cooke, William Fothergill

  • 11 Wheatstone, Sir Charles

    SUBJECT AREA: Telecommunications
    [br]
    b. 1802 near Gloucester, England
    d. 19 October 1875 Paris, France
    [br]
    English physicist, pioneer of electric telegraphy.
    [br]
    Wheatstone's family moved to London when he was 4 years old. He was educated at various schools in London and excelled in physics and mathematics. He qualified for a French prize but forfeited it because he was too shy to recite a speech in French at the prize-giving.
    An uncle, also called Charles Wheatstone, has a musical instrument manufacturing business where young Charles went to work. He was fascinated by the science of music, but did not enjoy business life. After the uncle's death, Charles and his brother William took over the business. Charles developed and patented the concertina, which the firm assembled from parts made by "outworkers". He devoted much of his time to studying the physics of sound and mechanism of sound transmission through solids. He sent speech and music over considerable distances through solid rods and stretched wires, and envisaged communication at a distance. He concluded, however, that electrical methods were more promising.
    In 1834 Wheatstone was appointed Professor of Experimental Philosophy—a part-time posi-tion—in the new King's College, London, which gave him some research facilities. He conducted experiments with a telegraph system using several miles of wire in the college corridors. Jointly with William Fothergill Cooke, in 1837 he obtained the first patent for a practical electric telegraph, and much of the remainder of his life was devoted to its improvement. In 1843 he gave a paper to the Royal Society surveying the state of electrical measurements and drew attention to a bridge circuit known ever since as the "Wheatstone bridge", although he clearly attributed it to S.H.Christie. Wheatstone devised the "ABC" telegraph, for use on private lines by anyone who could read, and a high-speed automatic telegraph which was adopted by the Post Office and used for many years. He also worked on the French and Belgian telegraph systems; he died when taken ill on a business visit to Paris.
    [br]
    Further Reading
    B.Bowers, 1975, Sir Charles Wheatstone FRS, London: HMSO.
    BB

    Biographical history of technology > Wheatstone, Sir Charles

  • 12 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

  • 13 Soemmerring, Samuel Thomas von

    SUBJECT AREA: Telecommunications
    [br]
    b. 28 January 1755 Torun, Poland (later Thorn, Prussia)
    d. 2 March 1830 Frankfurt, Germany
    [br]
    German physician who devised an early form of electric telegraph.
    [br]
    Soemmerring appears to have been a distinguished anatomist and physiologist who in 1805 became a member of the Munich Academy of Sciences. Whilst experimenting with electric currents in acid solutions in 1809, he observed the bubbles of gases produced by the dissociation process. Using this effect at the receiver, he devised a telegraph consisting of twenty-six parallel wires (one for each letter of the alphabet) and was able to transmit messages over a distance of 2 miles (3 km), but the idea was not commercially viable. In 1812, with the help of Schilling, he experimented with soluble indiarubber as a possible cable insulator.
    [br]
    Principal Honours and Distinctions
    Knight of the Order of St Anne of Russia 1818. Hon. Member of St Petersburg Imperial Academy of Sciences 1819. FRS 1827.
    Bibliography
    Soemmerring's "electrolytic" telegraph was described in a paper read before the Munich Academy of Sciences on 29 August 1809.
    Further Reading
    J.J.Fahie, 1884, A History of Electric Telegraphy to the Year 1837, London: E\&F Spon. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Soemmerring, Samuel Thomas von

  • 14 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 15 Tyer, Edward

    [br]
    b. 6 February 1830 Kennington, London, England
    d. 25 December 1912 Tunbridge Wells, England
    [br]
    English railway signal engineer, inventor of electric train-tablet system for the operation of single-line railways.
    [br]
    Use of the electric telegraph for the safe operation of railways was first proposed by W.F. Cooke in the late 1830s, but its application to this purpose and the concurrent replacement of the time-interval system of working, by the block system, comprised a matter of gradual evolution over several decades. In 1851 Tyer established a business making electrical apparatus for railways, and the block instruments invented by him in 1855 were an important step forward. A simple code of electric-bell rings (for up trains; for down trains, there was a distinctive gong) was used by one signalman to indicate to another in advance that a train was entering the section between them, and the latter signalman then operated a galvanometer telegraph instrument in the box of the former to indicate "train on line", holding it so until the train arrived.
    Even more important was the electric train-tablet apparatus. During the 1870s, single-line railways were operated either by telegraphed train orders, misuse of which led to two disastrous head-on collisions, or by "train staff and ticket", which lacked flexibility since no train could enter one end of a section while the train staff was at the other. At the request of Currer, an official of the Caledonian Railway, Tyer designed and produced his apparatus, in which a supply of discs, or "tablets", was contained in two instruments, one located at each end of a section, and linked electrically: only one tablet at a time could be extracted from the instruments, serving as an authority for a train to enter the section from one end or the other.
    [br]
    Bibliography
    1855, British patent no. 2,895 (block instruments). 1861, British patent no. 3,015 (block instruments). 1878, British patent for electric train-tablet apparatus.
    Further Reading
    C.Hamilton Ellis, 1959, British Railway History, Vol. II: 1877–1947, London: George Allen \& Unwin, p. 199 (describes the development of the tablet apparatus).
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann, pp. 157–8 and 164 (describes the block instruments and tablet apparatus).
    PJGR

    Biographical history of technology > Tyer, Edward

  • 16 Henry, Joseph

    [br]
    b. 17 December 1797 Albany, New York, USA
    d. 13 May 1878 Washington, DC, USA
    [br]
    American scientist after whom the unit of inductance is named.
    [br]
    Sent to stay with relatives at the age of 6 because of the illness of his father, when the latter died in 1811 Henry was apprenticed to a silversmith and then turned to the stage. Whilst he was ill himself, a book on science fired his interest and he began studying at Albany Academy, working as a tutor to finance his studies. Initially intending to pursue medicine, he then spent some time as a surveyor before becoming Professor of Mathematics and Natural Philosophy at Albany Academy in 1826. There he became interested in the improvement of electromagnets and discovered that the use of an increased number of turns of wire round the core greatly increased their power; by 1831 he was able to supply to Yale a magnet capable of lifting almost a ton weight. During this time he also discovered the principles of magnetic induction and self-inductance. In the same year he made, but did not patent, a cable telegraph system capable of working over a distance of 1 mile (1.6 km). It was at this time, too, that he found that adiabatic expansion of gases led to their sudden cooling, thus paving the way for the development of refrigerators. For this he was recommended for, but never received, the Copley Medal of the Royal Society. Five years later he became Professor of Natural Philosophy at New Jersey College (later Princeton University), where he deduced the laws governing the operation of transformers and observed that changes in magnetic flux induced electric currents in conductors. Later he also observed that spark discharges caused electrical effects at a distance. He therefore came close to the discovery of radio waves. In 1836 he was granted a year's leave of absence and travelled to Europe, where he was able to meet Michael Faraday. It was with his help that in 1844 Samuel Morse set up the first patented electric telegraph, but, sadly, the latter seems to have reaped all the credit and financial rewards. In 1846 he became the first secretary of the Washington Smithsonian Institute and did much to develop government support for scientific research. As a result of his efforts some 500 telegraph stations across the country were equipped with meteorological equipment to supply weather information by telegraph to a central location, a facility that eventually became the US National Weather Bureau. From 1852 he was a member of the Lighthouse Board, contributing to improvements in lighting and sound warning systems and becoming its chairman in 1871. During the Civil War he was a technical advisor to President Lincoln. He was a founder of the National Academy of Science and served as its President for eleven years.
    [br]
    Principal Honours and Distinctions
    President, American Association for the Advancement of Science 1849. President, National Academy of Science 1893–1904. In 1893, to honour his work on induction, the International Congress of Electricians adopted the henry as the unit of inductance.
    Bibliography
    1824. "On the chemical and mechanical effects of steam". 1825. "The production of cold by the rarefaction of air".
    1832, "On the production of currents \& sparks of electricity \& magnetism", American
    Journal of Science 22:403.
    "Theory of the so-called imponderables", Proceedings of the American Association for the Advancement of Science 6:84.
    Further Reading
    Smithsonian Institution, 1886, Joseph Henry, Scientific Writings, Washington DC.
    KF

    Biographical history of technology > Henry, Joseph

  • 17 Bright, Sir Charles Tilston

    SUBJECT AREA: Telecommunications
    [br]
    b. 8 June 1832 Wanstead, Essex, England
    d. 3 May 1888 Abbey Wood, London, England
    [br]
    English telegraph engineer responsible for laying the first transatlantic cable.
    [br]
    At the age of 15 years Bright left the London Merchant Taylors' School to join the two-year-old Electric Telegraph Company. By 1851 he was in charge of the Birmingham telegraph station. After a short time as Assistant Engineer with the newly formed British Telegraph Company, he joined his brother (who was Manager) as Engineer-in-Chief of the English and Irish Magnetic Telegraph Company in Liverpool, for which he laid thousands of miles of underground cable and developed a number of innovations in telegraphy including a resistance box for locating cable faults and a two-tone bell system for signalling. In 1853 he was responsible for the first successful underwater cable between Scotland and Ireland. Three years later, with the American financier Cyrus Field and John Brett, he founded and was Engineer-in-chief of the Atlantic Telegraph Company, which aimed at laying a cable between Ireland and Newfoundland. After several unsuccessful attempts this was finally completed on 5 August 1858, Bright was knighted a month later, but the cable then failed! In 1860 Bright resigned from the Magnetic Telegraph Company to set up an independent consultancy with another engineer, Joseph Latimer Clark, with whom he invented an improved bituminous cable insulation. Two years later he supervised construction of a telegraph cable to India, and in 1865 a further attempt to lay an Atlantic cable using Brunel's new ship, the Great Eastern. This cable broke during laying, but in 1866 a new cable was at last successfully laid and the 1865 cable recovered and repaired. The year 1878 saw extension of the Atlantic cable system to the West Indies and the invention with his brother of a system of neighbourhood fire alarms and even an automatic fire alarm.
    In 1861 Bright presented a paper to the British Association for the Advancement of Science on the need for electrical standards, leading to the creation of an organization that still exists in the 1990s. From 1865 until 1868 he was Liberal MP for Greenwich, and he later assisted with preparations for the 1881 Paris Exhibition.
    [br]
    Principal Honours and Distinctions
    Knighted 1858. Légion d'honneur. First President, Société Internationale des Electriciens. President, Society of Telegraph Engineers \& Electricians (later the Institution of Electrical Engineers) 1887.
    Bibliography
    1852, British patent (resistance box).
    1855, British patent no. 2,103 (two-tone bell system). 1878, British patent no. 3,801 (area fire alarms).
    1878, British patent no. 596 (automatic fire alarm).
    "The physical \& electrical effects of pressure \& temperature on submarine cable cores", Journal of the Institution of Electrical Engineers XVII (describes some of his investigations of cable characteristics).
    Further Reading
    C.Bright, 1898, Submarine Cables, Their History, Construction \& Working.
    —1910, The Life Story of Sir Charles Tilston Bright, London: Constable \& Co.
    KF

    Biographical history of technology > Bright, Sir Charles Tilston

  • 18 Crampton, Thomas Russell

    [br]
    b. 6 August 1816 Broadstairs, Kent, England
    d. 19 April 1888 London, England
    [br]
    English engineer, pioneer of submarine electric telegraphy and inventor of the Crampton locomotive.
    [br]
    After private education and an engineering apprenticeship, Crampton worked under Marc Brunel, Daniel Gooch and the Rennie brothers before setting up as a civil engineer in 1848. His developing ideas on locomotive design were expressed through a series of five patents taken out between 1842 and 1849, each making a multiplicity of claims. The most typical feature of the Crampton locomotive, however, was a single pair of driving wheels set to the rear of the firebox. This meant they could be of large diameter, while the centre of gravity of the locomotive remained low, for the boiler barrel, though large, had only small carrying-wheels beneath it. The cylinders were approximately midway along the boiler and were outside the frames, as was the valve gear. The result was a steady-riding locomotive which neither pitched about a central driving axle nor hunted from side to side, as did other contemporary locomotives, and its working parts were unusually accessible for maintenance. However, adhesive weight was limited and the long wheelbase tended to damage track. Locomotives of this type were soon superseded on British railways, although they lasted much longer in Germany and France. Locomotives built to the later patents incorporated a long, coupled wheelbase with drive through an intermediate crankshaft, but they mostly had only short lives. In 1851 Crampton, with associates, laid the first successful submarine electric telegraph cable. The previous year the brothers Jacob and John Brett had laid a cable, comprising a copper wire insulated with gutta-percha, beneath the English Channel from Dover to Cap Gris Nez: signals were passed but within a few hours the cable failed. Crampton joined the Bretts' company, put up half the capital needed for another attempt, and designed a much stronger cable. Four gutta-percha-insulated copper wires were twisted together, surrounded by tarred hemp and armoured by galvanized iron wires; this cable was successful.
    Crampton was also active in railway civil engineering and in water and gas engineering, and c. 1882 he invented a hydraulic tunnel-boring machine intended for a Channel tunnel.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers. Officier de la Légion d'Honneur (France).
    Bibliography
    1842, British patent no. 9,261.
    1845. British patent no. 10,854.
    1846. British patent no. 11,349.
    1847. British patent no. 11,760.
    1849, British patent no. 12,627.
    1885, British patent no. 14,021.
    Further Reading
    M.Sharman, 1933, The Crampton Locomotive, Swindon: M.Sharman; P.C.Dewhurst, 1956–7, "The Crampton locomotive", Parts I and II, Transactions of the Newcomen Society 30:99 (the most important recent publications on Crampton's locomotives).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allen. J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, 102–4.
    R.B.Matkin, 1979, "Thomas Crampton: Man of Kent", Industrial Past 6 (2).
    PJGR

    Biographical history of technology > Crampton, Thomas Russell

  • 19 Vail, Alfred Lewis

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 September 1807 Morristown, New Jersey, USA
    d. 18 January 1859 Morristown, New Jersey, USA
    [br]
    American telegraph pioneer and associate of Samuel Morse; widely credited with the invention of "Morse" code.
    [br]
    After leaving school, Vail was initially employed at his father's ironworks in Morristown, but he then decided to train for the Presbyterian ministry, graduating from New York City University in 1836. Unfortunately, he was then obliged to abandon his chosen career because of ill health. He accidentally met Samuel Morse not long afterwards, and he became interested in the latter's telegraph experiments; in return for a share of the rights, he agreed to construct apparatus and finance the filing of US and foreign patents. Working in Morristown with Morse and Leonard Gale, and with financial backing from his father, Vail constructed around his father's plant a telegraph with 3 miles (4.8 km) of wire. It is also possible that he, rather than Morse, was largely responsible for devising the so-called Morse code, a series of dot and dash codes representing the letters of the alphabet, and in which the simplest codes were chosen for those letters found to be most numerous in a case of printer's type. This system was first demonstrated on 6 January 1838 and there were subsequent public demonstrations in New York and Philadelphia. Eventually Congress authorized an above-ground line between Washington and Baltimore, and on 24 May 1844 the epoch-making message "What hath God wrought?" was transmitted.
    Vail remained with Morse for a further four years, but he gradually lost interest in telegraphy and resigned, receiving no credit for his important contribution.
    [br]
    Bibliography
    The Magnetic Telegraph.
    Further Reading
    J.J.Fahie, 1884, A History of the Electric Telegraph to the Year 1837, London: E\&F Spon.
    KF

    Biographical history of technology > Vail, Alfred Lewis

  • 20 Chappe, Claude

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 December 1763 Brulon, France
    d. 23 January 1805 Paris, France
    [br]
    French engineer who invented the semaphore visual telegraph.
    [br]
    Chappe began his studies at the Collège de Joyeuse, Rouen, and completed them at La Flèche. He was educated for the church with the intention of becoming an Abbé Commendataire, but this title did not in fact require him to perform any religious duties. He became interested in natural science and amongst other activities he carried out experiments with electrically charged soap bubbles.
    When the bénéfice was suppressed in 1781 he returned home and began to devise a system of telegraphic communication. With the help of his three brothers, particularly Abraham, and using an old idea, in 1790 he made a visual telegraph with suspended pendulums to relay coded messages over a distance of half a kilometre. Despite public suspicion and opposition, he presented the idea to the Assemblée Nationale on 22 May 1792. No doubt due to the influence of his brother, Ignace, a member of the Assemblée Nationale, the idea was favourably received, and on 1 April 1793 it was referred to the National Convention as being of military importance. As a result, Chappe was given the title of Telegraphy Engineer and commissioned to construct a semaphore (Gk. bearing a sign) link between Paris and Lille, a distance of some 240 km (150 miles), using twenty-two towers. Each station contained two telescopes for observing the adjacent towers, and each semaphore consisted of a central beam supporting two arms, whose positions gave nearly two hundred possible arrangements. Hence, by using a code book as a form of lookup table, Chappe was able to devise a code of over 8,000 words. The success of the system for communication during subsequent military conflicts resulted in him being commissioned to extend it with further links, a work that was continued by his brothers after his suicide during a period of illness and depression. Providing as it did an effective message speed of several thousand kilometres per hour, the system remained in use until the mid-nineteenth century, by which time the electric telegraph had become well established.
    [br]
    Further Reading
    R.Appleyard, 1930, Pioneers of Electrical Communication.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Chappe, Claude

См. также в других словарях:

  • Electric telegraph — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric telegraph — Telegraph Tel e*graph, n. [Gr. ? far, far off (cf. Lith. toli) + graph: cf. F. t[ e]l[ e]graphe. See {Graphic}.] An apparatus, or a process, for communicating intelligence rapidly between distant points, especially by means of preconcerted… …   The Collaborative International Dictionary of English

  • Electric Telegraph Company — was the world s first public telegraph company founded in the United Kingdom in 1846 by Sir William Fothergill Cooke and John Lewis Ricardo, MP for Stoke on Trent. C.F. Varley was chief engineer in the 1860s.It merged with the International… …   Wikipedia

  • electric telegraph — An apparatus or instrument used to transmit intelligence to a distant point with the aid of electricity. Western Union Tel Co. v Hill, 163 Ala 18, 50 So 248. electric wire. See electric line …   Ballentine's law dictionary

  • electric telegraph — Samuel F B Morse …   Inventors, Inventions

  • Electric — E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came from the… …   The Collaborative International Dictionary of English

  • Electric atmosphere — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric aura — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric cable — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric candle — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric cat — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»